STUDIES ON THE ADSORPTION OF 125I ON METALLIC PELLETS FOR THEIR POTENTIAL APPLICATION IN BONE DENSITOMETRY FOR THE DIAGNOSIS OF OSTEOPOROSIS

S.K. Saxena, Ramu Ram, A. Dash and Meera Venkatesh
Radiopharmaceuticals Division, Bhabha Atomic Research Centre
Nilima S. Rajurkar
Department of Chemistry, University of Pune, Pune
S.K. Srivastava
Atomic Fuels Division, Bhabha Atomic Research Centre
and
K.T. Pillai
Fuel Chemistry Division, Bhabha Atomic Research Centre

Abstract

125I - bone densitometry sources find extensive application in the diagnosis of osteoporosis by using single photon absorption (SPA) technique. Silver pellets of size ~ 2.5 mm (l) x 0.6 mm (f) were developed as base matrix for adsorption of 125I. Determination of specific surface area and pore size analysis of plain silver and palladium coated silver pellets was carried out. Experimental conditions for quantitative adsorption of 125I were optimized and the sources containing upto ~ 1.48 GBq of 125I were prepared. The leachability of sources was found to be < 0.01%. Such 125I - bone densitometry sources developed at our end have potential of application in the diagnosis of osteoporosis after encapsulation of sources within titanium capsules.

Introduction

Osteoporosis is a condition in which the bones become porous and fragile due to the loss of bone matrix (Ca$^{2+}$ etc.), leading to the decrease in the density of bones. It is often seen in persons with impaired bone metabolism, particularly in women during post menopause stage. Osteoporosis is common in absence of medical intervention [1]. Measurement of bone density is a useful diagnostic parameter for treatment planning. Some of the established procedures for bone density measurement are Single Photon Absorptiometry (SPA), Dual Photon Absorptiometry (DPA), Quantitative Computerized Tomography (QCT), Dual Energy X-ray Absorptiometry (DEXA) and Ultrasonography. Among these, SPA is a precise and accurate quantitative method available for
the determination of bone density. This is based on the attenuation of a photon that is passed through the bone, where the degree of attenuation is proportional to the bone density. SPA technique uses photons from a single energy radioactive source. In most cases radioisotopes such as 125I or 241Am are used. The use of 125I is preferred over 241Am, on account of its relatively easy availability and low radiotoxicity.

In a typical SPA analysis, the extremity is scanned in a rectilinear fashion, and the intensity of the photon beam after passage of the body is registered by a scintillation detector. SPA is mainly used for bone mineral measurements of the forearm or in the lower extremities from the distal femur and below.[2-3]. Depending upon various conditions, the choice of technique to be used in bone densitometry is left with the clinicians. However, despite several developments, SPA technique is still used widely as it is very reliable, relatively inexpensive and precise. It also involves very low radiation exposure and many SPA units can be used even in private offices. Preparation of a very small source of 125I (pellet of size ~ 2.5 mm (φ) x 0.6 mm (l)) with uniform dose distribution is an intricate job. Techniques such as impregnation of 125I on charcoal beads, electrodeposition of 125I on metallic substrates, etc. have been employed by some manufacturers for the preparation of 125I- bone densitometry sources. In all these substrates, 125I is confined to a minimal area of the base matrix and point sources incorporated with 125I are encapsulated in titanium capsules of dimension ~ 3 mm (OD) x 10mm (l).

In the studies carried out at our end, metallic silver pellets of ~2.5 mm (φ) x 0.6 mm (l) were developed as a base matrix and conditions for the adsorption of 125I on plain silver pellets as well as on palladium coated silver pellets were optimized. The sources were coated with thin film of polystyrene as a protective barrier to reduce the spread of contamination during handling and encapsulation of sources.

Materials

Reducing agent free 125I was procured from M/s Institute of Izotop, Hungary. High purity silver powder having particle size of ~20-25 micron (φ) was procured locally. Silver pellets of required size were fabricated with the help of a hydraulic press located at AFD, BARC. Specific surface area and pore size determination was done with the help of ‘SORPTOMATIC-1990 Analyzer’, procured from M/s C.E. Instruments, Italy. The well type NaI (Tl) scintillation counter and well type re-entrant ion chamber were used for source activity measurements. Polystyrene beads of ~ 6 mm (φ) manufactured by M/s Fluka Chemicals were used for polymer coating of 125I- adsorbed pellets. All other chemicals used were of GR/AR grade procured from reputed manufacturers.

Experimental

Fabrication of Metallic Pellets

The fabrication of silver pellets of ~2.5 mm (φ) x 0.6 mm (l) was carried out through powder metallurgy route by ‘Cold Die Compaction Technique’. Silver powder of ~20-25 micron (φ) grain size was compressed at a moderate pressure of ~ 0.5 kg/cm2 with the help of hydraulic press. A stroke controlled multiple hole cold die made from stainless steel was developed and employed to shape the silver powder in required pellet form and the stroke length was suitably adjusted to obtain silver pellets of ~ 0.6 mm (l).
Specific Surface Area and Porosity Determination

The specific surface area and pore size analysis of plain silver / palladium coated silver pellets was carried out by using ‘SORPTOMATIC 1990’ analyzer by studying adsorption- desorption isotherms. The lower part of the adsorption or desorption isotherm (i.e. $0.05 \leq \frac{P}{P_0} \leq 0.35$) was used for the measurement of specific surface area by multipoint B.E.T. Method [4]. The entire adsorption / desorption isotherm was used for pore size analysis. The pore volume and pore radius were calculated by considering the adsorbed film at the pore walls as cylindrical pores model [5].

Adsorption of ^{125}I on Metallic Pellets

The cleaned silver pellets were treated with 0.5% (w/v) PdCl$_2$ solution at -100°C for -15 min to coat them with palladium. Experimental conditions such as reaction volume, reaction temperature etc. were optimized for the quantitative adsorption of ^{125}I on both plain silver pellets as well as on palladium coated silver pellets. Initial tracer experiments were performed by adsorbing -370 KBg (10 mCi) of ^{125}I in the presence of -30 mg of carrier iodide (equivalent to -18.9 GBq) and later, the higher activity pellets were prepared under optimized conditions by using concentrated ^{125}I solution of radioactive concentration $-3.33 - 3.7$ GBq/mL. The activity associated with the pellets in tracer experiments was measured with the help of NaI (Tl) scintillation counter and that of having higher activity was measured by using a pre-calibrated re-entrant ionization chamber.

Leachability

The radioactive pellets were subjected to leachability test in accordance with a procedure prescribed by AERB [6]. Individual ^{125}I-adsorbed pellets containing upto 1.48 GBq of ^{125}I were kept in 100 mL of still double distilled water at room temperature for 48 h. At the end of the test, the leached out activity was estimated by assaying the samples of leachant with the help of a NaI (Tl) scintillation counter of known efficiency.

Polymer Coating on Pellets Adsorbed with ^{125}I

^{125}I - adsorbed palladium coated silver pellets were coated with polystyrene by treating them for -10 seconds with polystyrene solution at a concentration of -175 mg/mL. Coated pellets were washed with luke warm water at $-30-35^\circ\text{C}$ after drying.

Results and Discussion

Silver pellets of required size could be fabricated with the help of a multiple hole cold compaction die set [Fig.1]. The specific surface area of plain silver pellets and palladium coated silver pellets as determined by B.E.T. Method was found to be 6.7 m2/g and 6.8 m2/g respectively. The pore volume for both the types of pellets was found to be -0.003 cc/g. Both these parameters (i.e. high surface area and low porosity) are highly favorable for optimum adsorption of ^{125}I on metallic substrates. The pore size distribution of both the types of pellets is shown in [Fig.2]. The shrinkage of pore size in case of palladium coated silver pellets may be attributed to the coating of palladium within the pores. The reaction temperature of $-60-70^\circ\text{C}$ and reaction time of -6 h were found to be optimum for the adsorption of ^{125}I in the presence of -30 mg of carrier iodide. Adsorption of ^{125}I was found to depend upon the reaction volume as shown in [Table 1]. It was observed that as the effective iodide concentration increases (reaction volume decreases), the percentage adsorption also increases. However, below a certain reaction volume, it was impractical to work with low volumes. More
than 75% adsorption of ^{125}I was obtained on both silver/palladium coated silver pellets, when the reaction volume was kept as ~250 µL. The sources could be coated with thin layer of polystyrene without appreciable radiation cut-off. The results of leachability test are depicted in [Table 2]. On account of lower leachability, palladium coated silver pellets were preferred over plain silver pellets as a base matrix for the adsorption of ^{125}I. ^{125}I - sources upto ~1.48 GBq (40 mCi) of ^{125}I and containing ~30 mg of carrier iodide (equivalent to ~18.5 GBq of ^{125}I) could be prepared by repeating two adsorption cycles.
Conclusion

A method for the adsorption of 125I on metallic pellets could be developed for the fabrication of 125I-bone densitometry sources for the diagnosis of osteoporosis. Silver pellets of required size could be fabricated and surface area and pore size determination was carried out. Conditions for adsorption of 125I on plain silver pellets as well as on palladium coated silver pellets could be optimized. Palladium coated silver pellets exhibited lower leachability (< 0.01%) and were used for preparation of sources up to the radioactive strength of ~1.48 GBq each.

The sources developed at our end have potential application in the diagnosis of osteoporosis. The encapsulation of sources within the titanium capsules of ~ 50 micron thin window is warranted for their deployment in the diagnosis of osteoporosis.

Acknowledgements

The authors wish to thank Dr. V. Venugopal, Director, R C & IG for his keen interest, encouragement and support. Our thanks are due to Dr. N. Ramamoorthy, former Associate Director, RC & IG and Dr. M. R. A. Pillai, former Head, RPhD for their encouragement.
Mr S. K. Saxena

after graduation from Allahabad University joined BARC in 1987. He also obtained his M.Sc. degree in Chemistry from University of Pune. In the initial years, he was engaged in short lived fission products separation programme. He has significantly contributed to indigenous development of 137Cs and 125I - brachytherapy sources for their application in the treatment of gynaecological and eye cancers respectively. He has also been involved in the development of $^{186/188}$Re, 166Ho etc., based beta emitting liquid radioactive formulations for their potential application in endovascular brachytherapy. He has over 25 research papers to his credit including 12 national / international journal publications. Presently, in addition to the fabrication and supply of brachytherapy sources, he is also involved in the development of emerging brachytherapy and diagnostic radiation sources. He is a life member of IANCAS, INS, NAARRI. Kendriya

Sachivalaya Hindi Parishad and Hindi Vigyan Sahitya Parishad.

Mr Ramu Ram

joined BARC in 1998 after completing his graduation from Maharshi Dayanand Saraswati University. He obtained his M.Sc. degree in Chemistry from Mumbai University in 2004. He has contributed to the production and supply of therapeutic radiation sources. He is presently involved in the regular fabrication of 131Cs brachytherapy and industrial sources. He is also involved in the regular production of different therapeutic isotopes such as $^{186/188}$Re, 166Ho and 90Y. He is associated with the isolation of isotopes of therapeutic interests such as 90Y etc. He is a life member of IANCAS, INS, NAARRI and Hindi Vigyan Sahitya Parishad. He has more than 10 publications in various symposia, conferences etc.

References

Dr Ashutosh Dash joined BARC in 1983 after successful completion of the 26th batch of training school. He obtained his PhD degree in Chemistry from Mumbai University in 1994. His areas of expertise are fission products separation, large scale handling and vitrification of 137Cs, separation of radioisotopes by ion exchange methods etc. He had been on deputation to Korean Atomic Energy Research Institute (KAERI) as a Visiting scientist from November 2002 to April 2003. He was a member of IAEA sponsored CRP projects related to development of therapeutic radiation sources and development of generator technologies for therapeutic radionuclides. He is presently heading the T&RS Section of RPhD and looking after the program of production and supply of brachytherapy, industrial and reference sources. He has been involved in various capital plan projects of the Radiopharmaceuticals Division. He is a member of various departmental committees. He has more than 50 research publications including 10 publications in international journals. He is a life member of NAARRI, IANCAS and INS.

Dr (Ms.) Meera Venkatesh joined the Training School of BARC in the year 1976 after completing Bachelor’s Degree in Chemistry from Bombay University. She joined the Radiopharmaceuticals Division in 1977 and has been engaged in the research and development of Radiopharmaceuticals and radiometric assays since then. Dr. Meera obtained her doctorate degree from the Bombay University in 1986 for her work in the field of Radioimmunoassays. She did her postdoctoral fellowship at the University of Missouri, during 1992-94 in the field of therapeutic radiopharmaceuticals and later in 1999 served as a visiting professor at the same university. Currently, Dr. Meera is heading the Radiopharmaceuticals Division, BARC and concurrently serves in the capacity of General Manager of Quality Control at the Board of Radiation and Isotope Technology. She has published over 150 papers in international journals, international and national symposia / conferences and has authored a few invited articles. She has served as an expert in the field of Radiopharmaceuticals and Radiometric assays for the International Atomic Energy Agency.
Mr S.K. Srivastava joined the Atomic Fuels Division, BARC in 1982. Later, he completed Metallurgical Engineering from ‘The Institution Of Engineers (India)’, Calcutta. He has been involved in powder metallurgy development work and fabrication of control blades for BWR’s. He is also associated with development and fabrication of dispersion type fuel elements, regulating pins, control rods and burnable poison rods for PWRs. He is a life member of Powder Metallurgy Association of India, Indian Vacuum Society, Indian Nuclear Society, Indian Association of Nuclear Chemists and Allied Scientists, Indian Society for Non Destructive Testing and has several national and international technical papers and reports to his credit.

Dr (Ms) Nilima S. Rajurkar is professor in Physical Chemistry at University of Pune and is working in the field of Nuclear and Radiochemistry. She has guided 20 research students for M.Sc., Ph.D. and M.Phil. Degrees and has to her credit more than 100 research publications. She has written a book entitled “Nuclear Chemistry through Problems” and has contributed to the UGC sponsored Countrywide Classroom Programme on “Radioactivity”. She has been the vice president of “Indian Association of Nuclear Chemists and Allied Scientists” and is presently holding the post of convenor of “Indian Women Scientists Association”, Pune Chapter. She has attended several international and national conferences and has also delivered several lectures abroad.

Dr K.T. Pillai joined the Fuel Chemistry Division of BARC in 1977. Since then he has been working on the development of Sol-Gel Process for nuclear materials and advanced ceramics. In 2002, he obtained his PhD Degree from Mumbai University for his work carried out on Sol-Gel Process for alumina and alumina based ceramics. He has published several research papers for his work related to the process development for the preparation of alumina spheres, YAG, YBCO etc.